強連結成分分解(SCC)
romophic-library
用途
強連結成分分解をする. 巡回可能な部分ごとにグラフを分けてまとめ, それらのDAGを作る.
Example
上図においてグループ0とグループ1内ではそれぞれ互いに移動可能であり, またグループ間の移動についてグループ0からグループ1のみに移動可能である. 感覚的にはグラフの圧縮.
計算量
$ O(|V| + |E|) $
使い方
宣言
auto res = scc(g);
gはvector<vector<int>>
.res.indexToContracted[i]
で頂点iが属する強連結成分のindexを得る.res.contractedGraph
で強連結成分ごとにまとめられたグラフを得る(vector<vector<int>>
).
Exampleでの実行結果は:
res.indexToContracted = {
0,0,1,1,1
}
res.contractedGraph = {
{1},
{}
}
となる.
実装
struct scc_return {
vector<vector<int>> contractedGraph;
vector<int> indexToContracted;
};
scc_return scc(const vector<vector<int>> &_g) {
vector<vector<int>> gg(_g.size()), rg(_g.size()), contracted;
vector<int> comp(_g.size(), -1), order, used(_g.size());
for (int i = 0; i < _g.size(); i++) {
for (auto e : _g[i]) {
gg[i].emplace_back(e);
rg[e].emplace_back(i);
}
}
auto dfs = [&](auto &&self, int idx) {
if (used[idx])
return;
used[idx] = true;
for (int to : gg[idx])
self(self, to);
order.push_back(idx);
};
auto rdfs = [&](auto &&self, int idx, int cnt) {
if (comp[idx] != -1)
return;
comp[idx] = cnt;
for (int to : rg[idx])
self(self, to, cnt);
};
for (int i = 0; i < gg.size(); i++)
if (!used[i])
dfs(dfs, i);
reverse(order.begin(), order.end());
int ptr = 0;
for (int i : order)
if (comp[i] == -1)
rdfs(rdfs, i, ptr), ptr++;
contracted.resize(ptr);
for (int i = 0; i < _g.size(); i++) {
for (auto &to : _g[i]) {
int x = comp[i], y = comp[to];
if (x == y)
continue;
contracted[x].push_back(y);
}
}
for (auto &v : contracted) {
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
}
return {contracted, comp};
}